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Abstract. We present a general model-independent and rephase-invariant formalism that cleanly relates
CP and CPT noninvariant observables to the fundamental parameters. Different types of CP and CPT
violations in the K0-, B0-, B0

s - and D0-systems are explicitly defined. Their importance for interpreting
experimental measurements of CP and CPT violations is emphasized. In particular, we show that the
time-dependent measurements allow one to extract a clean signature of CPT violation.

1 Introduction

For the discrete symmetries of nature, violations have been
observed for C, P and the combined CP symmetries[1–
5]. In fact two types of CP violation have now been es-
tablished in the K-meson system. It remains an active
problem of research to observe CP asymmetries in heavier
mesons. In addition there is new interest in investigations
of properties of the CPT symmetry[6]. Up to now, there
are only bounds on CPT-violating parameters[7], which
are sensitive to the magnitude of amplitudes, but tests of
the relative phases have not yet been carried out.

In this article we present tests of CPT and CP, sep-
arately, and discuss which measurements distinguish be-
tween the various symmetry breaking terms. In addition,
we derive formulae which are manifestly invariant under
rephasing of the original mesonic states. The hope is to
call attention to several measurements which will be ac-
cessible to experiments in the future.

Our paper is organized as follows: In Sect. 2, we present
a complete set of parameters characterizing CP, T and
CPT nonconservation arising from the mass matrix, i.e.,
the so-called indirect CP-, T- and CPT-violation. A set
of direct CP-, T- and CPT-violating parameters originat-
ing from the decay amplitudes are defined in Sect. 3. In
Sect. 4, we defined all possible independent observables
and relate them directly to fundamental parameters which
are manifestly rephasing invariant and can be applied to
all meson decays. The various types of CP and CPT vio-
lation are classified, indicating how one can extract purely
CPT or CP violating effects. In Sect. 5, we investigate in
detail the time evolution of mesonic decays and introduce
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several time-dependent CP- and CPT-asymmetries which
allow one to measure separately the indirect CPT- and
CP-violating observables as well as direct CPT- and CP-
violating observables. In particular, we show how one can
extract a clean signature of CPT violation from asymme-
tries in neutral meson decays. In Sect. 6, we apply the
general formalism to the semileptonic and nonleptonic K-
meson decays and show how many rephasing invariant CP
and CPT observables can be extracted separately. Our
conclusions are presented in the last section.

2 CP- and CPT-violating parameters
in mass matrix

Let M0 be the neutral meson (which can be K0 or D0 or
B0 or B0

s ) and M̄0 its antiparticle. The evolution of M0

and M̄0 states is dictated by

d

dt

(
M0

M̄0

)
= −i

(
H11 H12

H21 H22

)(
M0

M̄0

)
(1)

with Hij =Mij−iΓij/2 the matrix elements, andMij , Γij
being the dispersive and absorptive parts, respectively.

The eigenvalues of the Hamiltonian are

H1 = H11 −
√
H12H21

1−∆M
1 +∆M

,

H2 = H22 +
√
H12H21

1−∆M
1 +∆M

, (2)

with

1−∆M
1 +∆M

=

[
1 +

δ2M
2
− δM

√
1 +

δ2M
4

]1/2

, and
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δM =
H22 −H11√
H12H21

(3)

We note already that δM is invariant under rephasing of
the states M0 and M̄0. The eigenfunctions of the Hamil-
tonian define the physical states. Following Bell and Stein-
berger[8], M0 and M̄0 mix with each other and form two
physical mass eigenstates

M1 = pS |M0 > +qS |M̄0 >, M2 = pL|M0 > −qL|M̄0 >
(4)

with normalization |pS |2 + |qS |2 = |pL|2 + |qL|2 = 1. The
coeficients are given by

qS
pS

=
q

p

1 +∆M
1−∆M ≡

1− εS
1 + εS

,
qL
pL

=
q

p

1−∆M
1 +∆M

≡ 1− εL
1 + εL

q

p
=
√
H21

H12
≡ 1− εM

1 + εM
(5)

We have also introduced the paramters εS,L,M following
[9]. In the CPT conserving case they reduce to the known
parameter εM . Thus we have a complete description of the
physical states in terms of the mass matrix, and the time
evolution is determined by the eigenvalues:

H1 =M1 − iΓ1/2; H2 =M2 − iΓ2/2 (6)

and is given simply by

M1 → e−iH1tM1; M2 → e−iH2tM2 (7)

We discuss next several properties related to the sym-
metries of the system. The parameters δM and |q/p| are
rephasing invariant and so are also other parameters de-
fined in terms of them. CPT invariance requires M11 =
M22 and Γ11 = Γ22, and implies that δM = 0. Thus the
difference between qS/pS and qL/pL represents a signal
of CPT violation. In other words, ∆M different from zero
indicates CPT violation.

CP invariance requires the dispersive and absorptive
parts of H12 and H21 to be, respectively, equal and im-
plies q/p = 1. Also if T invariance holds, then indepen-
dently of CPT symmetry, the dispersive and absorptive
parts of H12 and H21 must be equal up to a total relative
common phase, implying |q/p| = 1. Therefore a ReεM dif-
ferent from zero describes CP and T nonconservation and
can be present even when CPT is conserved. Finally, two
parameters, εM describing CP violation with T noncon-
servation and ∆M characterizing CPT violation with CP
nonconservation, are related to εS and εL via

εS =
εM −∆M
1− εM∆M ; εL =

εM +∆M
1 + εM∆M

(8)

and reduce to those given in [9] when neglecting the qua-
dratic term εM∆M . This is a complete set of parameters
describing CP, T and CPT nonconservation which origi-
nates in the mass matrix (indirect). In the next section
we discuss additional parameters originating in the decay
amplitudes (direct) as well as from the mixing between
mass matrix and decay amplitudes (mixed-induced).

3 CP- and CPT-violating parameters
in decay amplitudes

Let Heff be the effective Hamiltonian which contains
CPT-even H(+)

eff and CPT-odd H(−)
eff parts, i.e.,

Heff = H(+)
eff +H

(−)
eff (9)

with
(CPT )H(±)

eff (CPT )
−1 = ± H(±)

eff (10)

Let f denote the final state of the decay and f̄ its charge
conjugate state. The decay amplitudes of M0 are defined
as

g ≡ < f |Heff |M0 >=
∑
i

(Ai +Bi)eiδi

≡
∑
i

(|Ai|eiφA
i + |Bi|eiφB

i )eiδi ,

h̄ ≡ < f̄ |Heff |M0 >=
∑
i

(Ci +Di)eiδi

≡
∑
i

(|Ci|eiφC
i + |Di|eiφD

i )eiδi (11)

with Ai and Ci being CPT-conserving amplitudes

< f |H(+)
eff |M0 >≡

∑
i

Aie
iδi , < f̄ |H(+)

eff |M0 >≡
∑
i

Cie
iδi

(12)
and Bi and Di being CPT-violating amplitudes

< f |H(−)
eff |M0 >≡

∑
i

Bie
iδi , < f̄ |H(−)

eff |M0 >≡
∑
i

Die
iδi .

(13)
Here we have used the notation of [10] for the amplitude
g, and have introduced a new amplitude h̄. The second
amplitude is absent when one considers only K-meson de-
cays and neglects possible violation of ∆S = ∆Q rule as
was the case in [10]. This is because the K-meson decays
obey ∆S = ∆Q rule via weak interactions of the stan-
dard model. The reason is simple since the strange quark
can only decay to the up quark. In the case of B-, Bs-
and D-meson systems both amplitudes g and h̄ exist via
the W -boson exchange of weak interactions since both b-
quark and c-quark will have two different transitions due
to CKM quark mixings, i.e., b→ c, u and c→ s, d (for ex-
plicit decay modes see the classification for the processes
given in Sect. 5). φIi (I = A,B,C,D) are weak phases
and δi are strong phases from final state interactions. The
subscrpts i = 1, 2, · · · denote various strong interacting
final states, such as the different isospin states. For CP
transformation, we adopt the phase convention

CP |M0 >= |M̄0 > , CP |M̄0 >= |M0 > , (14)

It is then not difficult to show that the decay amplitudes
of the charge conjugate meson M̄0 have the following form

ḡ ≡ < f̄ |Heff |M̄0 >=
∑
i

(A∗
i −B∗

i )e
iδi
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≡
∑
i

(|Ai|e−iφA
i − |Bi|e−iφB

i )eiδi ,

h ≡ < f |Heff |M̄0 >=
∑
i

(C∗
i −D∗

i )e
iδi

≡
∑
i

(|Ci|e−iφC
i − |Di|e−iφD

i )eiδi . (15)

In analogy to the indirect CP- and CPT-violating pa-
rameters εS,L,M from mass matrix, we define now param-
eters containing direct CP and CPT violations

ε′M ≡ 1−h/g
1+h/g , ε̄

′
M ≡ 1−ḡ/h̄

1+ḡ/h̄ ;

ε′′M ≡ 1−ḡ/g
1+ḡ/g , ε̄

′′
M ≡ 1−h/h̄

1+h/h̄ (16)

For final states which are CP conjugate, i.e., |f̄ >= CP |f >
= |f >, the relations h = ḡ and h̄ = g hold, and thus
the four parameters are reduced to two independent ones:
ε′M = ε′′M and ε̄′M = ε̄′′M .

The symmetry properties of the amplitudes are as fol-
lows. If CP is conserved, independently of CPT symmetry,
one has ḡ/g = 1 and h/h̄ = 1, which implies

Ai = A∗
i , Ci = C∗

i , Bi = −B∗
i , Di = −D∗

i

in other words:

φAi = φCi = 0 , φBi = φDi = π/2 ,

namely, Ai and Ci are real, while Bi andDi are imaginary.
Similarly T invariance exchanges the initial and final

states and implies, independently of CPT symmetry,

Ai = A∗
i , Ci = C∗

i , Bi = B∗
i , Di = D∗

i

or
φAi = φCi = 0 , φBi = φDi = 0 ,

namely, all the amplitudes must be real. Finally, conserva-
tion of CPT requires Bi = 0 and Di = 0. We summarize
the results for the amplitudes in Table 1.

Reading across the first row of the table we have the
conditions for CP conservation, with T conservation (first
column) and without T-conservation (second column).
The relations Bi = −B∗

i and Di = −D∗
i imply T-violation

in the presence of CP conservation. The second row of the
table gives the conditions when T is conserved, with CP
conservation (first column) or without CP conservation
(second column). This is a complete set of amplitude with
the Ci and Di amplitudes introduced for the first time
here. As a consequence, two more CP- and CPT-violating
parameters εM and ε̄M in (16) are needed.

In summary of this section, we have the following con-
clusions. Values for Reε′′M and Reε̄′′M different from zero
describe CP nonconservation independently of T and CPT
symmetries. The presence of B′

is and D
′
is indicate simul-

taneous nonconservation of: CPT and either of CP or T.
Zero ε′′M and ε̄′′M with nonzero Imε′M and Imε̄′M implies
T nonconservation. Finally, zero Bi and Di, and com-
plex Ai and Ci signal CPT conservation with CP and T

violations. Note that the latter case is more difficult to
establish experimentally since it requires the observation
of a relative phase between two amplitudes distinguished
with the help of specific quantum numbers. This was the
case with the ε′/ε parameter in K-meson decays.

4 Rephase invariant CP-
and CPT-violating observables

The ε-type parameters defined in (5) and (16) can not be
related to physical observables since they are not rephas-
ing invariant. Let us introduce CP- and CPT-violating
observables by considering the ratio,

η̂f ≡ qS
qL

< f |Heff |M2 >

< f |Heff |M1 >
=
qS
qL

pL
pS

1− rLf
1 + rSf

(17)

which enters to the time evolution of the decay amplitudes
(see 27 and 28). The parameters qS,L and pS,L were defined
in Sect. 2, and we also introduce the notation

rSf = (qS/pS)(h/g)

with a similar definition for rLf . Note that the factor qS/qL
is necessary for the normalization and also rephase invari-
ance, which has not been always included in the literature.
In the CPT-conserving case [11] this factor is equal to
unity. One can simply see from the definitions in (3)-(5)
that η̂f is rephasing invariant. The factor qSpL/pSqL =
(1 +∆M )2/(1−∆M )2 is rephase-invariant since ∆M has
this property. The ratios rL,Sf = (qL,S/pL,S)(h/g) are also
rephase-invariant. To see that, let us make a phase redef-
inition |M0 >→ eiφ|M0 >, then |M̄0 >→ e−iφ|M̄0 >,
H12 → e−2iφH12 and H21 → e2iφH21, as well as h →
e−iφh and g → eiφg, thus (qS/pS , qL/pL) → e2iφ

(qS/pS , qL/pL) and h/g → e−2iφh/g, which makes rL,Sf =
(qL,S/pL,S)(h/g) manifestly rephase-invariant.

It is seen that the rephase-invariant quantities rL,Sf
and η̂f are given by the product of complex parameters
arising from the mass mixing (qL,S/pL,S) and from am-
plitudes (h/g). To separately define the rephase-invariant
CP- and CPT-violating observables originating from the
mass mixing and from the amplitudes, some algebra is
neccesary1, but it is not difficult to show that η̂f can be
rewritten as

η̂f ≡ 1
1− η∆

[
η∆ +

aεS + âε′ + i âεS+ε′

2 + aεS âε′ + âεSε′

]
(18)

where we have used the definitions

aεS =
1− | qSpS

|2
1 + | qSpS

|2 =
2ReεS
1 + |εS |2 =

aε − a∆
1− aεa∆ ,

aεL =
1− | qLpL

|2
1 + | qLpL

|2 =
2ReεL
1 + |εL|2 =

aε + a∆
1 + aεa∆

(19)

η∆ =
2∆M

1 +∆2
M

=
a∆ + ia′

∆

√
1− a2∆ − a′2

∆

1− a′2
∆

1 The algebra is described in [11]
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Table 1.

CPT-conservation CPT-Violation

CP-conservation Ai = A∗
i Ci = C∗

i Bi = −B∗
i Di = −D∗

i imply T-violation
T-conservation Ai = A∗

i Ci = C∗
i Bi = B∗

i Di = D∗
i imply CP-violation

CP & T conservation

with

aε =
1− |q/p|2
1 + |q/p|2 =

2ReεM
1 + |εM |2 , (20)

a∆ =
2Re∆M
1 + |∆M |2 , a′

∆ =
2Im∆M
1 + |∆M |2

The definitions of âε′ , âεS+ε′ and âεSε′ are given in the
appendix. The reader should note that quantities without
a hat contain either only CP or only CPT nonconserv-
ing effects, and with a hat contain both CP- and CPT-
nonconserving effects.

As aε, âε′ , âε+ε′ and âεε′ (for their definitions see ap-
pendix) are all rephase-invariant, so are also âεS+ε′ and
âεSε′ . Note that only three of them are independent since
(1 − a2ε)(1 − â2ε′) = â2ε+ε′ + (1 + âεε′)2. Another rephase-
invariant direct CP and CPT noninvariant observable is
defined as

âε′′ =
1− |ḡ/g|2
1 + |ḡ/g|2 =

2Reε′′M
1 + |ε′′M |2

=
aε′′ + aε∆ + a′

∆∆

1 + a′
ε∆ + a∆∆

(21)

where the definitions for aε′′ , aε∆, a′
∆∆, a

′
ε∆ and a∆∆ are

presented in the appendix. Analogously, one has

η̂f̄ ≡
qS
qL

< f̄ |Heff |M2 >

< f̄ |Heff |M1 >
=

1
1− η∆

×
[
η∆ +

aεS + âε̄′ + i âεS+ε̄′

2 + aεS âε̄′ + âεS ε̄′

]
(22)

and

âε̄′′ =
1− |h̄/h|2
1 + |h̄/h|2 =

2Reε̄′′M
1 + |ε̄′′M |2

=
aε̄′′ + aε̄∆̄ + a′

∆̄∆̄

1 + a′
ε̄∆̄

+ a∆̄∆̄
(23)

with ∆̄i = Di/Ci.
One of the interesting cases occurs when the final states

are CP eigenstates, i.e., fCP = f , and in this case h = ḡ
(or C = A and D = B). As a consequence, we find

âε′ = âε′′ , aε′ = aε′′

âε+ε′ =
1

1 + a′
ε∆ + a∆∆

[aε+ε′ + aε+ε′
∆
+ aε+ε′

∆∆
](24)

where the explicit definitions for aε+ε′ , aε+ε′
∆

and aε+ε′
∆∆

are again given in the appendix.
To see explicitly how many rephase invariant CPT and

CP observables may be separately measured from experi-
ments, let us consider the case for which the final states are
CP eigenstates and suppose that the violations are small

so that one could only keep the linear terms of the rephase
invariant CPT- and CP-violating observables. With this
consideration, the observable η̂f is simplified

η̂f 	 1
2
[aε + aε′ + a∆ + aε∆ + a′

∆∆

+i(aε+ε′ + a′
∆ + aε+ε′

∆∆
+ aε+ε′

∆
)] (25)

where the definitions for all the rephase invariant quanti-
ties are given in the appendix. Those with index ∆ are the
CPT-violating observables, the others are CP-violating
ones which have been discussed in [11].

The formalism so far involves many equations which
include CP and CPT violation effects either separately or
mixed together. It has several advantages in comparison
with other articles[12,10]:

1. The formalism is more general than the ones reported
in the literature and can be applied not only to the K-
meson decays but also all other heavier meson decays.

2. All observables are manifestly rephasing invariant and
well defined by directly relating to the hadronic mixing
matrix elements and decay amplitudes of mesons.

3. All possible independent observables are classified,
which enables one to separately measure different types
of CPT- and CP-violating observables and to extract
purely CPT or CP violation effects.

4. The formalism is more elegantly designed for extract-
ing various rephase invariant CPT- and CP- violating
observables from time-dependent measurements of me-
son decays, which will be discussed in detail in the next
section.

We have thus defined all possible rephase-invariant CP
and CPT noninvariant observables in terms of eight pa-
rameters related to CP and CPT breaking quantities aris-
ing either from mixing or phases of amplitude. The eight
parameters are classified as follows: εM is an indirect CP-
violating parameter and ∆M the indirect CPT-violating
parameters; the parameters ε′′M and ε̄′′M will be decom-
posed into four parameters, ε′′M , ε̄′′M , ∆i and ∆̄i, where
ε′′M and ε̄′′M define direct CP-violating paramters, ∆i and
∆̄i describe direct CPT-violating parameters. ε′M and ε̄′M
contain the ratio of the two decay amplitudes and can be
associated with direct CP and CPT violation, as well as
the interference between indirect and direct CP and CPT
violations. All the CP and CPT violations can be well
defined and in general classified into the following types:

1. purely indirect CP and CPT violations which are given
by the rephase-invariant CP-violating observable aε
and CPT-violating observables a∆ and a′

∆.
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2. purely direct CP and CPT violations which are charac-
terized by the rephase-invariant CP-violating observ-
ables aε′′ and aε̄′′ and CPT-violating observables aε∆,
a′
ε∆, a∆∆, a

′
∆∆, aε̄∆̄, a

′
ε̄∆̄

, a∆̄∆̄ and a′
∆̄∆̄

.
3. Mixed-induced CP and CPT violations which are de-

scribed by CP-violating observables aε+ε′ and aε+ε̄′
and CPT-violating observables aε+ε′

∆
, aε+ε′

∆∆
, aε+ε̄′

∆

and aε+ε̄′
∆∆

.

For the case that the final states are CP eigenstates, one
has âε′ = âε′′ = âε̄′ = âε̄′′ . Thus, in this case âε′ and âε̄′
also indicate purely direct CP and CPT violations. When
the final states are not CP eigenstates, âε′ and âε̄′ do not,
in general, provide a clear signal of direct CP violation al-
though they contain direct CP and CPT violations. Their
deviation from the values âε′ = ±1, 0 and âε̄′ = ∓1, 0 can
arise from different CKM angles, final state interactions,
or different hadronic form factors, but not necessarily from
CP and CPT violations.

5 Extraction of CP-
and CPT-violating observables

In order to measure the rephase-invariant observables de-
fined above, we consider the proper time evolution[13,14]
of the neutral mesons

|M0(t) > =
2∑
i=1

ξie
−i(mi−iΓi/2)t|Mi >

|M̄0(t) > =
2∑
i=1

ξ̄ie
−i(mi−iΓi/2)t|Mi > (26)

with ξ1 = qL/(qSpL+qLpS) and ξ2 = qS/(qSpL+qLpS) for
a pureM0 state at t = 0 as well as ξ̄1 = pL/(qSpL+qLpS)
and ξ̄2 = −pS/(qSpL+qLpS) for a pure M̄0 state at t = 0.
Thus the decay amplitudes of M0 and M̄0 at the time t
will be given by

A(t) =< f |M0(t) > =
< f |M1 >

pS

1− η∆
2

(27)

× (e−iH1t + η̂fe−iH2t
)
,

Ā(t) =< f̄ |M̄0(t) > =
< f̄ |M1 >

qS

1− η∆
2

(28)

×
(
1 + η∆
1− η∆ e

−iH1t − η̂f̄e−iH2t

)

It follows now that the time-dependent decay rates are

Γ (M0(t)→ f)∝|A(t)|2=(|g|2 + |h|2)2 + aεS âε′ + âεSε′
1 + aεS

×e−Γt
{[

1 + aεS âε′ + (aεS + âε′)Reη∆ + âεS+ε′Imη∆
2 + aεS âε′ + âεSε′

−Reη∆ + |η∆|2
]
cosh(∆Γt)

+
[
1 + aεS ε̂′ − (aεS + âε′)Reη∆ − âεS+ε′Imη∆

2 + aεS âε′ + âεSε′
−Reη∆

]

× sinh(∆Γt) +
[
(aεS + âε′)(1−Reη∆)− âεS+ε′Imη∆

2 + aεS âε′ + âεSε′

+Reη∆ − |η∆|2
]
cos(∆mt) +

[
âεS+ε′(1−Reη∆)
2 + aεS âε′ + âεSε′

+
(aεS + âε′)Imη∆
2 + aεS âε′ + âεSε′

+ Imη∆

]
sin(∆mt)

}
(29)

and

Γ (M̄0(t)→ f̄)∝|Ā(t)|2=(|ḡ|2 + |h̄|2)2 + aεS âε̄′ + âεS ε̄′
1 + aεS

×e−Γt
{[

1 + aεS âε̄′ + (aεS + âε̄′)Reη∆ + âεS+ε̄′Imη∆
2 + aεS âε̄′ + âεS ε̄′

−Reη∆ − |η∆|2
]
cosh(∆Γt)

+
[
1 + aεSˆ̄ε′ − (aεS + âε̄′)Reη∆ − âεS+ε̄′Imη∆

2 + aεS âε̄′ + âεS ε̄′
−Reη∆

]

× sinh(∆Γt)−
[
(aεS + âε̄′)(1 +Reη∆) + âεS+ε̄′Imη∆

2 + aεS âε̄′ + âεS ε̄′

+Reη∆ + |η∆|2
]
cos(∆mt)−

[
âεS+ε̄′(1 +Reη∆)
2 + aεS âε̄′ + âεS ε̄′

− (aεS + âε̄′)Imη∆
2 + aεS âε̄′ + âεS ε̄′

− Imη∆
]
sin(∆mt)

}
(30)

where ∆Γ = Γ2 − Γ1 and ∆m = m2 −m1. Here we have
omitted the integrals from the phase space. Similarly, one
can easily write down the decay rates Γ (M0(t)→ f̄) and
Γ (M

0
(t) → f), and then the time-dependent CP and

CPT asymmetries are defined by the difference between
two decay rates. In addition, in studies of the time depen-
dence one can isolate each of four-terms. One can intro-
duce several asymmetries from the decay rates Γ (M0(t)→
f), Γ (M

0
(t) → f̄) , Γ (M0(t) → f̄) and Γ (M

0
(t) → f) .

Obviously, the time dependences contains a lot of informa-
tion. Therefore studies of time evolution can eliminate the
various components (hamonics) in cos(∆mt), sin(∆mt),
cosh(∆Γt) and sinh(∆Γt). We now proceed to apply the
above general analysis to specific processes. As in the [11],
we may classify the processes into four scenarios:

i) M0 → f (M0 → f̄) , M
0 → f̄ (M

0 → f) ,
this is the case when f and f̄ are not a common final
state ofM0 andM

0
. Examples are:M0 →M ′− l̄ν, M̄0 →

M ′+lν̄; B0 → D−D+
s , D

−K+, π−D+
s , π

−K+, B̄0 →
D+D−

s , D
+K−, π+D−

s , π
+K−; B0

s → D−
s π

+, D−
s D

+,
K−π+ , K−D+, B

0
s → D+

s π
−, D+

s D
−, K+π−, K+D−.

This scenario also applies to charged meson decays.
ii) M0 → (f = f̄ , fCP = f) ← M

0
, this is the

decay to a common final state which is CP eigenstate.
Such as B0(B̄0), D0(D̄0), K0(K̄0) → π+π−, π0π0, · · ·.
For the final states such as π−ρ+ and π+ρ− , although
each of them is not a CP eigenstate of B0(B̄0) or D0(D̄0),
one can always decompose them into CP eigenstates as
(πρ)± = (π−ρ+ ± π+ρ−) with CP (πρ)± = ±(πρ)±. This
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reconstruction is meaningful since π−ρ+ and π+ρ− have
the same weak phase as they contain the same quark con-
tent.

iii) M0 → (f, f → fCP ) ← M
0
, i.e., the final states

are common final states but are not charge conjugate
states. For example, B0(B̄0) → KSJ/ψ, B0

s (B̄
0
s ) → KSφ

and D0(D̄0)→ KSπ
0, KSρ0.

iv) M0 → (f & f̄ , fCP = f) ← M
0
, i.e., both

f and f̄ are the common final states of M0 and M
0
, but

they are not CP eigenstates. This is the most general case.
For example, B0(B̄0)→ D−π+, π−D+ ; D−ρ+, ρ−D+;
B0
s (B̄

0
s )→ D−

s K
+, K−D+

s ; D
0(D̄0)→ K−π+, K+π−.

In this paper, we will only elaborate on the first two
scenarios. In scenario i), the amplitudes h and h̄ are zero,
thus âε′ = −âε̄′ = 1, âε+ε′ = 0 = âε+ε̄′ and âεε′ = −1 =
âεε̄′ . For this case, the time-dependent rates of (29) and
(30) will become very simple,

Γ (M0(t)→ f) ∝ |A(t)|2 = |g|2e−Γt · {(1 + |η∆|2)
× cosh∆Γt− 2Reη∆ sinh∆Γt+ (1− |η∆|2)
× cos∆mt+ Imη∆ sin∆mt}

Γ (M̄0(t)→ f̄) ∝ |Ā(t)|2 = |ḡ|2e−Γt · {(1 + |η∆|2)
× cosh∆Γt+ 2Reη∆ sinh∆Γt+ (1− |η∆|2)
× cos∆mt− Imη∆ sin∆mt} (31)

It is not difficult to show that the other two time-depen-
dent decay rates which are not allowed at t = 0, can hap-
pen at a later t, because the M0 develops an M̄0 compo-
nent through mixing. They can be simply expressed as

Γ (M0(t)→ f̄) ∝ g
2 + |ḡ|2

2
(1− âε′′)

(
1− aεS
1 + aεS

)
(1− a∆)2
1− a′2

∆

·e−Γt(cosh∆Γt− cos∆mt)

Γ (M̄0(t)→ f) ∝ g
2 + |ḡ|2

2
(1 + âε′′)

(
1 + aεL
1− aεL

)
(1− a∆)2
1− a′2

∆

·e−Γt(cosh∆Γt− cos∆mt) (32)

With these four decay rates, we can define three asym-
metries which have the following simple forms when ne-
glecting the quadratic and high order terms of the CP and
CPT violating parameters (i.e., a2∆, a

′2
∆, aεa

2
∆)

ACP+CPT (t) =
Γ (M0(t)→ f)− Γ (M0

(t)→ f̄)

Γ (M0(t)→ f) + Γ (M
0
(t)→ f̄)

(33)

	 aε′′ + aε∆ +
−a∆ sinh∆Γt+ a′

∆ sin∆mt
cosh∆Γt+ cos∆mt

A′
CP+CPT (t) =

Γ (M
0
(t)→ f)− Γ (M0(t)→ f̄)

Γ (M
0
(t)→ f) + Γ (M0(t)→ f̄)

(34)

	 aε′′ + aε∆ + 2aε

A′′
CP+CPT (t) =

Γ (M0(t)→ f)− Γ (M0
(t)→ f)

Γ (M0(t)→ f) + Γ (M
0
(t)→ f)

(35)

	 cos∆mt− aε cosh∆Γt− a∆ sinh∆Γt+ a′
∆ sin∆mt

cosh∆Γt− aε cos∆mt− a∆ sinh∆Γt+ a′
∆ sin∆mt

Their exact expressions can be found in the appendix.
From the time-dependent measurements of the above
asymmetries, one shall be able to extract all observables:
∆m, ∆Γ , aε, a∆, a′

∆ and âε′′ .
From the above asymmetries, we easily arrive at the

following important observations:
1. As long as the experimental measurements show that
the asymmetry ACP+CPT (t) is not a constant and de-
pends on time, it provides a clean signature of indirect
CPT violation from mixings.

2. For the semileptonic decays M0 → M
′−lν and also

for the decay modes in which the final state interac-
tions are absent, one has aε′′ = 0, a′

∆∆ = 0, a′
ε∆ = 0

and âε′′ = aε∆/(1 + a∆∆), thus nonzero âε′′ will rep-
resent direct CPT violation from amplitudes. For this
case, we come to a strong conclusion that once the
asymmetry ACP+CPT (t) is not zero, then CPT must
be violated.

3. By combining measurement of the above asymmetries
from semileptonic and nonleptonic decays, it allows
one, in principle, to separately measure the indirect
CP-violating observable aε and the direct CP-violating
observable aε′′ as well as the indirect CPT-violating
observables a∆ and a′

∆, and the direct CPT-violating
observable aε∆.
We now discuss scenario ii) in which h̄ = g and h = ḡ,

thus aε′ = aε′′ = aε̄′ = aε̄′′ and aε+ε′ = aε+ε̄′ . When
neglecting the quadratic and high order terms and using
the relations and definitions for the rephase-invariant ob-
servables, the time-dependent asymmetry is simply given
by

ACP+CPT (t)	−(aε + a∆)+e−∆Γt[(aε + a∆ + âε′) (36)
× cos(∆mt) + (a′

∆ + âε+ε′) sin(∆mt)]

(The exact expression is given in the appendix.)
From the above time-dependent evolutionACP+CPT (t)

one is able to extract three physical quantities: one of them
is the direct CP and CPT noninvariant observable âε′ and
the other two are the combinations of CP and CPT nonin-
variant observables (aε+a∆) and (a′

∆+ âε+ε′). Combining
these measurements with scenario (i), in which the indi-
rect CP and CPT noninvariant observables aε, a∆ and a′

∆
are expected to be determined, one will be able to extract
the mixed-induced CP and CPT noninvariant observable
âε+ε′ . Thus, studies of scenarios (i) and (ii) allow us to
separate the three types of CP and CPT violations.

6 CP and CPT violation in K-meson system

The formalism and analyses presented above are general
and can be used for all neutral meson systems. As a spe-
cific application, we are going to consider the K-meson
system. From semileptonic decays of K0 → π− + l+ + νl
and K̄0 → π+ + l− + ν̄l, from (33) and (34), the time-
dependent measurements of the asymmetries lead to

AKl3
CP+CPT (t)=

Γ (K0(t)→π−l+νl)− Γ (K0
(t)→ π+l−ν̄l)

Γ (K0(t)→π−l+νl) + Γ (K
0
(t)→ π+l−ν̄l)
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	aε∆+−a∆ sinh∆Γt+ a′
∆ sin∆mKt

cosh∆Γt+ cos∆mKt
, (37)

A
′Kl3
CP+CPT (t)=

Γ (K
0
(t)→π−l+νl)− Γ (K0(t)→π+l−ν̄l)

Γ (K
0
(t)→π−l+νl) + Γ (K0(t)→π+l−ν̄l)

	 aε∆ + 2aε (38)

where the direct CP-violating parameter aε′′ is expected to
be small as the final state interactions are electromagnetic.
It is then clear that non-zero asymmetry AKl3

CP+CPT (t) is
a clean signature of CPT violation. Its time evolution al-
lows us to extract direct CPT-violating observable aε∆
and indirect CPT-violating observables a∆ and a′

∆. The
combination of the two asymmetries A

′Kl3
CP+CPT (t) and

AKl3
CP+CPT (t) further helps us to extract indirect CP-viola-

ting observable aε.
In the nonleptonic decays with final states being CP

eigenstates, the asymmetry ACP+CPT (t) is given in terms
of the observables âε′ and âε+ε′ which concern both CP
and CPT violations. In general, it is hard to clearly sepa-
rate CP violation from CPT violation in the decay ampli-
tudes, but it would be of interest to look for possibilities
of establishing CPT violation arising from the decay am-
plitudes. For the K-meson system, there are two unique
decay modesK0(K̄0)→ π+π− and π0π0 which are related
via isospin symmetry. Their time-dependent asymmetries
are given by

A
(π+π−)
CP+CPT (t) 	 −(aε + a∆) + e−∆Γt[(aε + a∆ + â(+−)

ε′ )

× cos(∆mKt) + (a′
∆ + â(+−)

ε+ε′ ) sin(∆mKt)] , (39)

A
(π0π0)
CP+CPT (t) 	 −(aε + a∆) + e−∆Γt[(aε + a∆ + â(00)ε′ )

× cos(∆mKt) + (a′
∆ + â(00)ε+ε′) sin(∆mKt)] . (40)

It is seen that since the indirect CP-violating observable aε
and indirect CPT-violating observables a∆ and a′

∆ can be
extracted from asymmetries in the semileptonic decays,
we then can extract the direct CP- and CPT-violating
observables â(+−)

ε′ and â(00)ε′ as well as mixed-induced CP-
and CPT-violating observables â(+−)

ε+ε′ and â(00)ε+ε′ . We now
discuss how to extract pure CPT or CP violation effects
by using isospin symmetry.

When neglecting high order terms, we have

âε′ 	 aε′ +a′
∆∆+aε∆, âε+ε′ 	 aε+ε′ +aε+ε′

∆∆
+aε+ε′

∆

(41)
Note that their dependence on the final states are under-
stood. Using the isospin symmetry, we find

A(+−) =

√
2
3
a0 +

√
1
3
a2

A(00) =

√
1
3
a0 −

√
2
3
a2 (42)

with A(+−) and A(00) the amplitudes for the decay modes
K0(K̄0) → π+π− and K0(K̄0) → π0π0 respectively,
where a0 and a2 correspond to the isospin I = 0 and I =

2 amplitudes. The same decomposition holds for B(+−)

and B(00) amplitudes2. Considering the fact that ω =
|A2|/|A0| 	 1/22 << 1 due to the ∆I = 1/2 rule, we
obtain

â
(+−)
ε′ 	 aε′ + a′

∆∆ + ãε∆ + a0ε∆,

â
(00)
ε′ 	 −2aε′ − 2a′

∆∆ − 2ãε∆ + a0ε∆, (43)

and

â
(+−)
ε+ε′ 	 a0ε+ε′ + a0ε+ε′∆∆

+ ãε+ε′ + ãε+ε′
∆∆

+ aε+ε′
∆

â
(00)
ε+ε′ 	 a0ε+ε′ + a0ε+ε′∆∆

− 2ãε+ε′ − 2ãε+ε′
∆∆
− 2aε+ε′

∆
(44)

with

a0ε∆ = 2Re∆0 = 2Re
(
B0

A0

)
,

ãε∆ = 2Re[
A2

A0
(∆2 −∆0)] cos(δ0 − δ2)

a0ε+ε′ = 2
ImεK

1 + |εK |2Re
(
A∗

0

A0

)
+ 2

1− |εK |2
1 + |εK |2 Im

(
A∗

0

A0

)

ãε+ε′ 	 4[
ImεK

1 + |εK |2Re
(
A∗

2

A0

)
+

1− |εK |2
1 + |εK |2

×Im
(
A∗

2

A0

)
] cos(δ0 − δ2) (45)

a0ε+ε′
∆∆

= −2 ImεK
1 + |εK |2Re

(
A∗

0

A0
∆∗2

0

)

−21− |εK |
2

1 + |εK |2 Im
(
A∗

0

A0
∆∗2

0

)

ãε+ε′
∆∆
	 −4[ ImεK

1 + |εK |2Re
(
A∗

2

A0
∆∗

0∆
∗
2

)

+
1− |εK |2
1 + |εK |2 Im

(
A∗

2

A0
∆∗

0∆
∗
2

)
] cos(δ0 − δ2)

where we have neglected quadratic terms of ω = |A2/A0|.
Note that the above results hold for any choice of phase
conventions. It is then obvious that

a0ε∆ =
2
3
â
(+−)
ε′ +

1
3
â
(00)
ε′ (46)

which shows that once the asymmetries â(+−)
ε′ and â(00)ε′

are measured, their combination given above will allow one
to extract a clean signature of CPT violation arising from
the decay amplitudes. Where the values of â(+−)

ε′ and â(00)ε′
can be simply extracted from the asymmetry ACP+CPT (t)
at t = 0 in (39). It is noticed that when |∆0| << 1, i.e.,
|a0ε+ε′

∆∆
| << |a0ε+ε′ | (while ∆2 could remain at the order

of one), one has

a0ε+ε′ 	
2
3
â
(+−)
ε+ε′ +

1
3
â
(00)
ε+ε′ (47)

which indicates that by measuring â(+−)
ε+ε′ and â(00)ε+ε′ one

may extract the direct-indirect mixed-induced CP viola-
tion.

2 Note that normalization of A(00) is smaller by a factor
√
2

than the usual one ocuuring in literature.
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7 Conclusions

In summary, we have developed the general model-inde-
pendent and rephase-invariant formalism for testing CP-
and CPT-noninvariant observables in meson decays. The
formalism presented in previous articles for CPT is based
on the density matrix approach[15]. In our article, we
present a complete time-dependent and rephase-invariant
formulation in terms of amplitudes. The rephase invari-
ance of all CP and CPT noninvariant observables is main-
tained throughout the calculation. All possible indepen-
dent observables have been classified systematically, which
is more general and complete than the published results
and can be used for all meson decays. This enables one
to separately measure different types of CPT- and CP-
violating observables and to neatly distinguish effects of
CPT from CP violation. The formalism which involves
many and elaborate definitions is directly related to funda-
mental parameters and can prove advantageous in estab-
lishing CPT-violating parameters from time-dependent
measurements of meson decays. Several time-dependent
CPT- and CP- asymmetries have been introduced, which
led to some interesting observations:

i). As long as measurements of the asymmetry
ACP+CPT (t) in the neutral meson decays (classified in the
scenario i) in Sect. 5 ) is not a constant but depends on
time, one can conclude that CPT invariance is broken due
to mixing;

ii). For the semileptonic decays M0 → M
′−lν, one

may come to a strong statement that once the asymme-
try ACP+CPT (t) is not zero, then CPT must be violated.
Among the decays the semileptonic decays are the more
representative and perhaps the easiest to measure.

iii). A combined measurement of several time-depen-
dent CPT- and CP- asymmetries from semileptonic and
nonleptonic decays is necessary in order to isolate sepa-
rately the indirect and direct CPT- and CP-violating ef-
fects.

Extraction of a clean signature on CPT, CP and T vi-
olation will play an important role in testing the standard
model and local quantum field theory and in addition pro-
vides an interesting window for probing new physics. For
all these reasons, this topic attracts a lot of attention[16].
We hope that the general rephase-invariant formalism pre-
sented in this paper will be useful for further studies of
CPT, CP and T in the neutral meson systems produced
at B-factories, the Φ-factory[17] and colliders.
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Appendix

Here we collect some useful formuli. The definitions for the
rephase-invariant observables:

âε′ =
1 − |h/g|2
1 + |h/g|2 =

2Reε′
M

1 + |ε′
M |2 ,

âεS+ε′ =
−4Im(qSh/pSg)

(1 + |qS/pS |2)(1 + |h/g|2)
=

1
1 − aεa∆

[
âε+ε′

√
1 − a2

∆ − a
′2
∆ − a′

∆(1 + âεε′)
]

âεSε′ =
4Re(qSh/pSg)

(1 + |qS/pS |2)(1 + |h/g|2) − 1

=
1

1 − aεa∆

[
âεε′
√
1 − a2

∆ − a
′2
∆ + a′

∆âε+ε′

+(
√
1 − a2

∆ − a
′2
∆ − 1) + aεa∆

]
, (A.1)

with

âε+ε′ =
−4Im(qh/pg)

(1 + |q/p|2)(1 + |h/g|2)

=
2ImεM (1 − |ε′

M |2) + 2Imε′
M (1 − |εM |2)

(1 + |εM |2)(1 + |ε′
M |2) ,

âεε′ =
4Re(qh/pg)

(1 + |q/p|2)(1 + |h/g|2) − 1

=
4ImεM Imε′

M − 2(|εM |2 + |ε′
M |2)

(1 + |εM |2)(1 + |ε′
M |2) . (A.2)

Rephase invariant observables for purely CP and CPT vi-
olation

aε′′ =
|∑

i
Aie

iδi |2 − |∑
i
A∗

i eiδi |2
|∑

i
Aieiδi |2 + |∑

i
A∗

i eiδi |2

= −
2
∑

ij
AiA

∗
j sin(δi − δj)

|∑
i
Aieiδi |2 + |∑

i
A∗

i eiδi |2 ,

aε∆ =
2
∑

i,j
AiA

∗
j (∆i + ∆∗

j ) cos(δi − δj)

|∑
i
Aieiδi |2 + |∑

i
A∗

i eiδi |2 ,

a′
ε∆ =

2i
∑

i,j
AiA

∗
j (∆i + ∆∗

j ) sin(δi − δj)

|∑
i
Aieiδi |2 + |∑

i
A∗

i eiδi |2 , (A.3)

a∆∆ =
2
∑

i,j
AiA

∗
j ∆i∆

∗
j cos(δi − δj

|∑
i
Aieiδi |2 + |∑

i
A∗

i eiδi |2 ,

a′
∆∆ =

2i
∑

i,j
AiA

∗
j ∆i∆

∗
j sin(δi − δj)

|∑
i
Aieiδi |2 + |∑

i
A∗

i eiδi |2

with ∆i = Bi/Ai. Here ∆i are rephase-invariant quantities and
characterize direct CPT violation in the decay amplitudes.

aε+ε′ =
2ImεM (1 − |ε′

M |2) + 2Imε′
M (1 − |εM |2)

(1 + |εM |2)(1 + |ε′
M |2)

aε+ε′
∆
=

2ImεM (1 − |ε′
∆|2) + 2Imε′

∆(1 − |εM |2)
(1 + |εM |2)(1 + |ε′

∆|2) , (A.4)

aε+ε′
∆∆

=
2ImεM (1 − |ε′

∆∆|2) + 2Imε′
∆∆(1 − |εM |2)

(1 + |εM |2)(1 + |ε′
∆∆|2) ,
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with

1 − |ε′
M |2

1 + |ε′
M |2 =

2
∑

i,j
Re(AiAj) cos(δi − δj)

|∑
i
Aieiδi |2 + |∑

i
A∗

i eiδi |2 ,

1 − |ε′
∆|2

1 + |ε′
∆|2 = −

2
∑

i,j
Im[AiAj(∆i − ∆j)] sin(δi − δj)

|∑
i
Aieiδi |2 + |∑

i
A∗

i eiδi |2 ,

1 − |ε′
∆∆|2

1 + |ε′
∆∆|2 = −

2
∑

i,j
Re[AiAj(∆i∆j)] cos(δi − δj)

|∑
i
Aieiδi |2 + |∑

i
A∗

i eiδi |2 ,

2Imε′
M

1 + |ε′
M |2 = −

2
∑

i,j
Im(AiAj) cos(δi − δj)

|∑
i
Aieiδi |2 + |∑

i
A∗

i eiδi |2 , (A.5)

2Imε′
∆

1 + |ε′
∆|2 = −

2
∑

i,j
Re[AiAj(∆i − ∆j)] sin(δi − δj)

|∑
i
Aieiδi |2 + |∑

i
A∗

i eiδi |2 ,

2Imε′
∆∆

1 + |ε′
∆∆|2 =

2
∑

i,j
Im[AiAj(∆i∆j)] cos(δi − δj)

|∑
i
Aieiδi |2 + |∑

i
A∗

i eiδi |2 .

The exact expressions for the time-dependent CP and CPT
asymmetries in the scenario i):

ACP+CP T (t)= Γ (M0(t)→f)−Γ (M
0(t)→f̄)

Γ (M0(t)→f)+Γ (M
0(t)→f̄)

, (A.6)

=
â

ε′′+2ACP T (t)/[(1+|η∆|2) cosh ∆Γ t+(1−|η∆|2) cos ∆mt]

1+2â
ε′′ ACP T (t)/[(1+|η∆|2) cosh ∆Γ t+(1−|η∆|2) cos ∆mt]

,

A′
CP+CP T (t)= Γ (M

0(t)→f)−Γ (M0(t)→f̄)

Γ (M
0(t)→f)+Γ (M0(t)→f̄)

, (A.7)

=(âε′′+ 2aε
1+a2

ε
)/(1+ 2aε

1+a2
ε

âε′′ ) ,

A′′
CP+CP T (t)= Γ (M0(t)→f)−Γ (M

0(t)→f)

Γ (M0(t)→f)+Γ (M
0(t)→f)

, (A.8)

=

1−a2
∆

−a
′2
∆

+aεa
′2
∆

(1−aε)(1−a
′2
∆

)
cos ∆mt−

aε−a2
∆

(1−aε)(1−a
′2
∆

)
cosh ∆Γ t+ACP T (t)

1−aεa2
∆

(1−aε)(1−a
′2
∆

)
cosh ∆Γ t−

aε(1−a2
∆

−a
′2
∆

)+a
′2
∆

(1−aε)(1−a
′2
∆

)
cos ∆mt+ACP T (t)

,

with

ACPT = − a∆

1 − a
′2
∆

sinh∆Γt +
a′

∆

√
1 − a2

∆ − a
′2
∆

1 − a
′2
∆

sin∆mt ,

(A.9)
and in the scenario ii):

ACP+CPT (t) =
∆̂m(t) + ∆CPT (t) − aεS (∆̂γ(t) + ∆′

CPT (t))
∆̂γ(t) + ∆′

CPT (t) − aεS (∆̂m(t) + ∆CPT (t))
,

(A.10)
with

∆̂m(t) = (aεS + âε′) cos(∆mt) + âεS+ε′ sin(∆mt) (A.11)

∆̂γ(t) = (1 + aεS âε′) cosh(∆Γt) + (1 + âεSε′) sinh(∆Γt) ,

and

∆CPT (t) = (2 + aεS âε′ + âεSε′)
[ a∆

1 − a
′2
∆

×(cos∆mt − e∆Γt) +
a′

∆

1 − a
′2
∆

sin∆mt
]

∆′
CPT (t) = −[

a∆

1 − a
′2
∆

(aεS + âε′) +
a′

∆

1 − a
′2
∆

âεS+ε′ ]

× (cos∆mt − e−∆Γt) + [
a′

∆

1 − a
′2
∆

(aεS + âε′)

− a∆

1 − a
′2
∆

âεS+ε′ ] sin∆mt , (A.12)

− (2 + aεS âε′+âεSε′)
a2

∆ + a
′2
∆

(1 − a
′2
∆)2

(cos∆mt−cosh∆Γt)

Note that when CPT is conserved, ∆CPT (t) = ∆′
CPT = 0.
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